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LETTER TO THE EDITOR 

Absence of universality in percolation models of disordered 
elastic media with central forces 

Sepehr Arbabi and Muhammad Sahimi 
Department of Chemical Engineering, University of Southern California, Los Angeles, CA 
90089-1211. USA 

Received 24 May 1988 

Abstract. We investigate the universality of scaling laws in elastic percolation networks 
with central forces. Near the percolation threshold pCe the elastic moduli G vanish as 
G - (p -pee) ', and the correlation length 6, diverges as 6. - ( p  - p c e ) - " e ,  where p is the 
fraction of active bonds. For bond, correlated bond and site percolation on a triangular 
network we estimate the ratio flu, using Monte Carlo simulations and finite-size scaling 
analysis, and find f/u,= 1.42, 1.28 and 1.14, respectively. We also find a different value 
of U, for each of these percolation processes. Therefore, topological and mechanical 
properties of disordered media with central forces may not have universal properties, and 
may depend strongly on the microscopic details of the elastic media. These results may 
also have implications for other vector models of phase transition. 

Elastic percolation networks and their topological and mechanical properties near the 
percolation threshold pce have recently received considerable attention. Such systems, 
which are relevant to a large class of disordered materials, such as gels, aggregates 
and composites, have been studied both theoretically and experimentally, and many 
new results have emerged. Jerauld (1985) and Feng and Sen (1984) studied a simple 
elastic percolation network, namely the central force (CF) model, which is essentially 
a network of simple springs in which only stretching forces are present. The percolation 
problem that was studied by these authors was a bond percolation (BP) process in 
which each spring is present with a probability p. The potential energy of the system 
is given by 

where ui and uj are displacements of sites i andj ,  and R, a unit vector from site i to 
j .  Here k, is a random variable which takes a finite value with probability p and is 0 
with probability 1 - p ,  and essentially represents the elastic constant of the spring 
between i and j. This model is rotationally invariant and bears a close resemblance 
to various finite-element models in macroscopic stress analysis. It can be constructed 
by a finite-element discretisation of the Navier equations, in which one employs bilinear 
basis functions defined on an equilateral triangle and a Poisson ratio equal to f. Thus, 
this model may be considered an analogue of a three-dimensional solid in planar 
strain, pierced by cylindrical holes normal to the plane of strain. One can in a similar 
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manner construct a three-dimensional version of the model on a FCC or BCC network. 
Near the percolation threshold, the elastic moduli G of the system appear to obey the 
following power law: 

wheref is a critical exponent. I t  was established by Jerauld (1985) and Feng and Sen 
(1984) that pce is much larger than p c ,  the connectivity (or conductivity) threshold. 
For example, for simple-cubic networks in any dimension one has the peculiar property 
that p c e =  1. Therefore, a meaningful study of this problem is restricted to certain 
networks, e.g. triangular and BCC networks, and for the triangular network one has 
(Jerauld 1985, Sahimi and Goddard 1985, Lemieux er a1 1985) pce=0.65 for BP, as 
compared with p c  = 0.347. Numerical simulations of Feng and Sen (1984) also indicated 
that f may be much larger than t ,  the critical exponent of conductivity. Day et a1 
(1986) have shown that the topological properties of percolation clusters in the C F  

model differ considerably from those of ordinary percolation clusters. For the CF  

model a correlation length 6, can be defined which appears to diverge as pce is 
approached: 

where (Sahimi and Goddard 1985, Lemieux et a1 1985, Day er a1 1986) y e =  1.1 for 
two-dimensional systems, whereas the correlation length exponent of ordinary percola- 
tion is v = :. The most accurate estimate off  for two-dimensional systems appears to 
be (Sahimi and Goddard 1985, Lemieux et a1 1985) f/v,= 1.45, as opposed to 
t /  v = 0.97. The CF model has also been studied within an effective-medium approxima- 
tion ( E M A )  by several authors (Jerauld 1985, Feng er a1 1985, Garboczi and Thorpe 
1985a, b, 1986, Thorpe and Garboczi 1987) and it appears that the E M A  is very accurate 
for describing the C F  model. 

The main goal of this letter is to test the idea of universality for the CF  model. For 
ordinary percolation, the critical exponent t is universal, and it depends only on the 
dimensionality of the system (except for a special class of continuous systems). It 
does not depend on the type of the network, or whether one considers BP or site 
percolation (sP). However, it is not clear that f should also be universal, because in 
elastic percolation networks the contribution of each cluster depends not only on its 
connectivity (as in the case of conductivity or, more generally, scalar problems), but 
also on its shape and the kind of microscopic force law that one uses. Prunet and 
Blanc (1986) and Wang (1988) have studied the critical properties of rigid site and 
bond animals, i.e. large elastic clusters that are formed in the C F  model below p c e .  Their 
results indicate that site and bond animals may be described by different scaling laws. 
Garcia-Molina er a1 (1988) have studied the effect of the ratio of the two Lam6 constants 
(in the Navier equations) on the elastic properties of percolation networks, and have 
found that this ratio strongly affects the critical behaviour. However, the universality 
of BP and SP in elastic percolation networks and the possible dependence of the critical 
exponents on the microscopic details of the system have not been investigated before. 
In  this letter we study this for the CF  model because it has a well established link with 
real continuous systems, whereas elastic percolation systems in which both the central 
and bond-bending forces are present (Kantor and Webman 1984, Feng and Sahimi 
1985, Zabolitzky et a1 1986) do not seem to have such correspondence with continuum 
equations, although they have been argued to be better models for real systems. 
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We have studied the C F  model in S P  and B P  on a triangular network. Site percolation 
on a triangular network has been previously studied by Thorpe and Garboczi (1987) 
within an E M A ,  and by numerical simulations. However, the critical behaviour of G 
or te was not studied by these authors. We have also studied the C F  model within a 
correlated-bond percolation (CBP)  process. In  this model, which was originally pro- 
posed by Kirkpatrick (1973) for studying of hopping conduction in disordered 
materials, each site is assigned a random number S, uniformly distributed in (-1, + l ) .  
Random numbers S,, for the bonds connecting sites i and j are calculated via S,, = 
i ( lS , l+ lS , l+ lSl  -S,l). All bonds with S, > A are removed, where A is some selected 
limit. I t  is easy to show that the fraction p(A) of remaining bonds is given by 

O S A G l  p(A) s { "' 
A - $A' 1 s A s 2 .  (4) 

We first determined the percolation threshold pce for SP and C B P  in the C F  model. 
In order to do this, we used finite-size scaling analysis (FSSA) according to which 
(Levinshtein et al 1976) 

p c e ( L  a) - p c e ( L )  - E" (5) 

where x = vi', and pc,(L) is the effective percolation threshold of a network of linear 
size L. Therefore, we used various network sizes, ranging from L = 10 to L = 45. For 
each network size we determined the nodal displacements by minimising E with respect 
to ui and solving the resulting set of linear equations by Gaussian elimination; from 
the solution of this set we determined G. We then used many realisations and averaged 
the results; table 1 presents the statistics of our simulations. Non-percolating clusters 
were discarded from our simulations, and the numbers in table 1 refer to the number 
of percolating configurations. Thus, the total number of realisations (percolating or 
not) were much larger than those shown in table 1 .  In figure 1 we present the variations 
of pee( L )  with L for SP. A fit of the data to equation ( 5 )  yields 

pce = 0.71 * 0.01 v, = 0.94 * 0.05 for SP. (6) 

It is interesting to note that pce is well represented by (2)-''2, 
Next, we determined pce for CBP. We first used a mean-field-like argument to 

estimate pee. The average number N ,  of bonds at each site of the network in B P  is 
N ,  = zp, where z = 6 is the coordination number of the triangular network. Thus, at 
pce of B P  one has N,=  6 ~ 0 . 6 5  = 3.9. On the other hand, in C B P  one has N ,  = zp/A 
which, in view of ( 5 ) ,  means that Nc=jA. If we assume that N ,  at pce is essentially 
the same for both BP and CBP, we obtain A(pc,) = 0.87, which means that pce  = 0.57 for 
CBP on the triangular network. In figure 1 we also present the dependence of p, , (L)  
on L for CBP, from which we obtain 

pce = 0.58 * 0.01 v, = 0.90 * 0.05 for C B P  (7 )  

Table 1. Number of realisations for each network size L for various percolation models. 

L 10 15 20 25 30 3s 40 45 

Bond percolation 300 240 200 160 100 100 100 60 
Site percolation 300 300 200 200 - 120 - 120 
Correlated bond percolation 300 300 700 200 - 120 - 100 
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Figure 1. Dependence of p , , ( L )  on the network size L for site and correlated bond 
percolation. Full circles are the Monte Carlo data, and full lines are the best fit to equation 
( 5 ) .  

which is in agreement with our mean-field estimate. In fact, if we use the prediction 
of EMA, Nc(pce) = 4, we obtain pce = = 0.59, which is also in agreement with (7) .  Note 
that for B P  one has (Sahimi and Goddard 1985, Lemieux er a1 1985) v,= 1.1. In figure 
2 we present the dependence of the bulk modulus G on p ( A )  in C B P .  For A < 1 
( p  < 0.75), this problem is more similar to a SP model, because a bond would not be 
removed if and only if ISi[ < A and ISj/ < A. This is also clear from figure 2 .  For p < 0.75, 
the variation of G with p has a distinct curvature, which is typical of a SP model (in 
BP, only very close to pce one observes a distinct curvature). 

To estimate f, we again used FSSA according to which 

G .- C y  ( 1 + ag, ( L )  + bg,( L )  ) (8) 

0.8 - 

0.6 - 
G 

0.4 - 

0.2 - 

0 
0.6 0.7 0.8 0.9 1.0 

P 
Figure 2. Variation of the bulk modulus G with the fraction p of active bonds in the 
correlated bond percolation. Full circles are the Monte Carlo data. 
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for a network of linear dimension L at pce . Here g , (  L )  and g2( L )  represent, respectively, 
the leading non-analytical and analytical correction terms to scaling, f / v,, and a and 
b are constant. Various forms of g , ( L )  and g z ( L )  were tried in order to obtain the 
best fit to the data. We found that the best fit in all cases is provided by 

g l ( L )  = (In L)-'  g , (L)  = L-'. (9) 

Using these, we obtained (see figure 3) 

1.42 f 0.04 BP 

CBP 

1.14 f 0.04 SP. 

The difference between the results for various models is large enough that we believe 
our results are conclusive evidence that there is no universality for the critical exponents 
that characterise the CF model. However, we should mention that our estimates of v, 
for various models are less accurate than those off / v, . We also found that corrections 
to scaling affect significantly the estimates off  / v,. For example, if we neglect g, (  L )  
and g2( L ) ,  we obtain f / v, = 1.03 for SP. In all cases the values of a and b in equation 
(8) were of the order of unity, as they should be. For example, we found a = 2.4 and 
b = 2.9 for BP. The results for SP and CBP also indicate that, at least for the CF model, 
it is possible that the elagticity exponents for certain percolation processes can be less 
than the conductivity exponent t. However, the ratio f / v, which, for j n i t e  systems, is 
the proper quantity, is always greater than t l  v, 

In summary, we have presented the first conclusive evidence that various percolation 
processes in the CF model are not characterised by universal scaling laws. The critical 
exponents appear to depend on the microscopic details of the system. Whether elastic 
networks with both the central and bond-bending forces exhibit the same type of 
non-universal behaviour is still an open question. If so, such models may not be as 
general as they have been thought to be. Our results may also have implications for 

-' t 1 

2.1 2.6 3.1 3.6 
In L 

Figure 3. Dependence of In G on In L at p,. for various percolation models. Full circles 
are the Monte Carlo data, and the curves are the best fit to equation (8) .  
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other vector models of phase transition such as the Heisenberg model. These matters 
will be discussed in a future paper. 
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